AskDefine | Define transistor

Dictionary Definition

transistor n : a semiconductor device capable of amplification [syn: junction transistor, electronic transistor]

User Contributed Dictionary

English

Etymology

Blend of transconductance (or transfer) and resistor

Pronunciation

Noun

  1. a solid-state semiconductor device, with three terminals, which can be used for amplification, switching, voltage stabilization, signal modulation, and many other functions
  2. In the context of "dated|informal": a transistor radio

Translations

solid-state semiconductor device, with three terminals
small portable radio

Extensive Definition

In electronics, a transistor is a semiconductor device commonly used to amplify or switch electronic signals. The transistor is the fundamental building block of computers, and all other modern electronic devices. Some transistors are packaged individually but most are found in integrated circuits.

Introduction

An electrical signal can be amplified by using a device that allows a small current or voltage to control the flow of a much larger current. Transistors are the basic devices providing control of this kind. Modern transistors are divided into two main categories: bipolar junction transistors (BJTs) and field effect transistors (FETs). Applying current in BJTs and voltage in FETs between the input and common terminals increases the conductivity between the common and output terminals, thereby controlling current flow between them. The characteristics of a transistor depend on its type.
The term "transistor" originally referred to the point contact type, which saw very limited commercial application, being replaced by the much more practical bipolar junction types in the early 1950s. Today's most widely used schematic symbol, like the term "transistor", originally referred to these long-obsolete devices.
In analog circuits, transistors are used in amplifiers, (direct current amplifiers, audio amplifiers, radio frequency amplifiers), and linear regulated power supplies. Transistors are also used in digital circuits where they function as electronic switches, but rarely as discrete devices, almost always being incorporated in monolithic Integrated Circuits. Digital circuits include logic gates, random access memory (RAM), microprocessors, and digital signal processors (DSPs).

History

The first patent for the field-effect transistor principle was filed in Canada by Austrian-Hungarian physicist Julius Edgar Lilienfeld on October 22, 1925, but Lilienfeld did not publish any research articles about his devices, and they were ignored by industry. In 1934 German physicist Dr. Oskar Heil patented another field-effect transistor. There is no direct evidence that these devices were built, but later work in the 1990s shows that one of Lilienfeld's designs worked as described and gave substantial gain. Legal papers from the Bell Labs patent show that Shockley and Pearson had built operational versions from Lilienfeld's patents, yet they never referenced this work in any of their later research papers or historical articles.
On 16 December 1947, William Shockley, John Bardeen, and Walter Brattain succeeded in building the first practical point-contact transistor at Bell Labs. This work followed from their war-time efforts to produce extremely pure germanium "crystal" mixer diodes, used in radar units as a frequency mixer element in microwave radar receivers. They made a demonstration to several of their colleagues and managers at Bell Labs on the afternoon of 23 December 1947, often given as the birth date of the transistor. A parallel project on germanium diodes at Purdue University succeeded in producing the good-quality germanium semiconducting crystals that were used at Bell Labs. Early tube-based technology did not switch fast enough for this role, leading the Bell team to use solid state diodes instead. With this knowledge in hand they turned to the design of a triode, but found this was not at all easy. Bardeen eventually developed a new branch of surface physics to account for the "odd" behavior they saw, and Bardeen and Brattain eventually succeeded in building a working device.
At the same time some European scientists were led by the idea of solid-state amplifiers. In August 1948 German physicists Herbert F. Mataré (1912– ) and Heinrich Welker (1912–1981), working in Aulnay-sous-Bois, France, for Compagnie des Freins et Signaux Westinghouse of Paris, applied for a patent on an amplifier based on the minority carrier injection process which they called the "transistron". Since Bell Labs did not make a public announcement of the transistor until June 1948, the transistron was considered to be independently developed. Mataré had first observed transconductance effects during the manufacture of germanium duodiodes for German radar equipment during WWII. Transistrons were commercially manufactured for the French telephone company and military, and in 1953 a solid-state radio receiver with four transistrons was demonstrated at the Düsseldorf Radio Fair.
Bell Telephone Laboratories needed a generic name for the new invention: "Semiconductor Triode", "Solid Triode", "Surface States Triode", "Crystal Triode" and "Iotatron" were all considered, but "transistor," coined by John R. Pierce, won an internal ballot. The rationale for the name is described in the following extract from the company's Technical Memorandum calling for votes:
Pierce recalled the naming somewhat differently:
Over the next two decades, transistors gradually replaced the earlier vacuum tubes in most applications and later made possible many new devices such as integrated circuits and personal computers.
Shockley, Bardeen and Brattain were honored with the Nobel Prize in Physics "for their researches on semiconductors and their discovery of the transistor effect". Bardeen would go on to win a second Nobel in physics, one of only two people to receive more than one in the same discipline, for his work on the exploration of superconductivity.
The commercial uses of germanium transistors were limited by their sensitivity to temperature and humidity. Silicon, a semiconductor with crystal structure identical to germanium, looked promising but attempts over several years to make useful transistors were unsuccessful. In early 1954, M. Tanenbaum et al. (Jl. of Applied Physics, 26, 686 (1955)) at Bell Labs made a high performance silicon transistor using npn junctions produced by growth rate fluctuations during crystal growing. A few months later, working independently at Texas Instruments, G. Teal (unpublished) made similar devices using sequential doping.
While these devices had much superior temperature and environmental properties compared to gemanium transistors, the doping processes were difficult to control. That problem was solved by Tanenbaum and Fuller (Bell Sys. Tech. Jl., 35, 1 (1956)) using gas diffusion techniques to produce npn silicon transistors. The resulting diffused base silicon transistor was the subject of the second Bell Labs symposium. The diffusion process was easy to control, quickly adopted by the semiconductor industry and was the basis for the later invention of the integrated circuit initiating the "silicon age". The first gallium-arsenide Schottky-gate field-effect transistor (MESFET) was made by Carver Mead and reported in 1966.

Importance

The transistor is considered by many to be the greatest invention of the twentieth century. It is the key active component in practically all modern electronics. Its importance in today's society rests on its ability to be mass produced using a highly automated process (fabrication) that achieves astonishingly low per-transistor costs.
Although several companies each produce over a billion individually-packaged (known as discrete) transistors every year , the vast majority of transistors produced are in integrated circuits (often abbreviated as IC and also called microchips or simply chips) along with diodes, resistors, capacitors and other electronic components to produce complete electronic circuits. A logic gate consists of about twenty transistors whereas an advanced microprocessor, as of 2006, can use as many as 1.7 billion transistors (MOSFETs).
"About 60 million transistors were built this year [2002] ... for [each] man, woman, and child on Earth."
The transistor's low cost, flexibility and reliability have made it a universal device for non-mechanical tasks, such as digital computing. Transistorized mechatronics circuits have replaced electromechanical devices for the control of appliances and machinery as well. It is often easier and cheaper to use a standard microcontroller and write a computer program to carry out a control function than to design an equivalent mechanical control function.
Because of the low cost of transistors and hence digital computers, there is a trend to digitize information, such as the Internet Archive. With digital computers offering the ability to quickly find, sort and process digital information, more and more effort has been put into making information digital. As a result, today, much media data is delivered in digital form, finally being converted and presented in analog form to the user. Areas influenced by the Digital Revolution include television, radio, and newspapers.

Comparison with vacuum tubes

Prior to the development of transistors, vacuum (electron) tubes (or in the UK "thermionic valves" or just "valves") were the main active components in electronic equipment.

Advantages

The key advantages that have allowed transistors to replace their vacuum tube predecessors in most applications are:
  • Small size and minimal weight, allowing the development of miniaturized electronic devices.
  • Highly automated manufacturing processes, resulting in low per-unit cost.
  • Lower possible operating voltages, making transistors suitable for small, battery-powered applications.
  • No warm-up period for cathode heaters required after power application.
  • Lower power dissipation and generally greater energy efficiency.
  • Higher reliability and greater physical ruggedness.
  • Extremely long life. Some transistorized devices produced more than 30 years ago are still in service.
  • Complementary devices available, facilitating the design of complementary-symmetry circuits, something not possible with vacuum tubes.
  • Though in most transistors the junctions have different doping levels and geometry, some allow bidirectional current
  • Ability to control very large currents, as much as several hundred amperes.
  • Insensitivity to mechanical shock and vibration, thus avoiding the problem of microphonics in audio applications.
  • More sensitive than the hot and macroscopic tubes

Disadvantages

  • Silicon transistors do not operate at voltages higher than about 1 kV, SiC go to 3 kV.
  • The electron mobility is higher in a vacuum, so that high power, high frequency operation is easier in tubes.

Types

|- align = "center" | * Alloy junction transistor

Semiconductor material

The first BJTs were made from germanium (Ge) and some high power types still are. Silicon (Si) types currently predominate but certain advanced microwave and high performance versions now employ the compound semiconductor material gallium arsenide (GaAs) and the semiconductor alloy silicon germanium (SiGe). Single element semiconductor material (Ge and Si) is described as elemental.
Rough parameters for the most common semiconductor materials used to make transistors are given in the table below; it must be noted that these parameters will vary with increase in temperature, electric field, impurity level, strain and various other factors:
The junction forward voltage is the voltage applied to the emitter-base junction of a BJT in order to make the base conduct a specified current. The current increases exponentially as the junction forward voltage is increased. The values given in the table are typical for a current of 1 mA (the same values apply to semiconductor diodes). The lower the junction forward voltage the better, as this means that less power is required to "drive" the transistor. The junction forward voltage for a given current decreases with increase in temperature. For a typical silicon junction the change is approximately −2.1 mV/°C.
The density of mobile carriers in the channel of a MOSFET is a function of the electric field forming the channel and of various other phenomena such as the impurity level in the channel. Some impurities, called dopants, are introduced deliberately in making a MOSFET, to control the MOSFET electrical behavior.
The electron mobility and hole mobility columns show the average speed that electrons and holes diffuse through the semiconductor material with an electric field of 1 volt per meter applied across the material. In general, the higher the electron mobility the faster the transistor. The table indicates that Ge is a better material than Si in this respect. However, Ge has four major shortcomings compared to silicon and gallium arsenide:
  • its maximum temperature is limited
  • it has relatively high leakage current
  • it cannot withstand high voltages
  • it is less suitable for fabricating integrated circuits
Because the electron mobility is higher than the hole mobility for all semiconductor materials, a given bipolar NPN transistor tends to be faster than an equivalent PNP transistor type. GaAs has the highest electron mobility of the three semiconductors. It is for this reason that GaAs is used in high frequency applications. A relatively recent FET development, the high electron mobility transistor (HEMT), has a heterostructure (junction between different semiconductor materials) of aluminium gallium arsenide (AlGaAs)-gallium arsenide (GaAs) which has double the electron mobility of a GaAs-metal barrier junction. Because of their high speed and low noise, HEMTs are used in satellite receivers working at frequencies around 12 GHz.
Max. junction temperature values represent a cross section taken from various manufacturers' data sheets. This temperature should not be exceeded or the transistor may be damaged.
Al-Si junction refers to the high-speed (aluminum-silicon) semiconductor-metal barrier diode, commonly known as a Schottky diode. This is included in the table because some silicon power IGFETs have a parasitic reverse Schottky diode formed between the source and drain as part of the fabrication process. This diode can be a nuisance, but sometimes it is used in the circuit.

Packaging

Transistors come in many different packages (chip carriers) (see images). The two main categories are through-hole (or leaded), and surface-mount, also known as surface mount device (SMD). The ball grid array (BGA) is the latest surface mount package (currently only for large transistor arrays). It has solder "balls" on the underside in place of leads. Because they are smaller and have shorter interconnections, SMDs have better high frequency characteristics but lower power rating.
Transistor packages are made of glass, metal, ceramic or plastic. The package often dictates the power rating and frequency characteristics. Power transistors have large packages that can be clamped to heat sinks for enhanced cooling. Additionally, most power transistors have the collector or drain physically connected to the metal can/metal plate. At the other extreme, some surface-mount microwave transistors are as small as grains of sand.
Often a given transistor type is available in different packages. Transistor packages are mainly standardized, but the assignment of a transistor's functions to the terminals is not: different transistor types can assign different functions to the package's terminals. Even for the same transistor type the terminal assignment can vary (normally indicated by a suffix letter to the part number- i.e. BC212L and BC212K).

Usage

For a basic guide to the operation of transistors, see How a transistor works.
In the early days of transistor circuit design, the bipolar junction transistor, or BJT, was the most commonly used transistor. Even after MOSFETs became available, the BJT remained the transistor of choice for digital and analog circuits because of their ease of manufacture and speed. However, desirable properties of MOSFETs, such as their utility in low-power devices, have made them the ubiquitous choice for use in digital circuits and a very common choice for use in analog circuits.

Switches

Transistors are commonly used as electronic switches, for both high power applications including switched-mode power supplies and low power applications such as logic gates.

Amplifiers

From mobile phones to televisions, vast numbers of products include amplifiers for sound reproduction, radio transmission, and signal processing. The first discrete transistor audio amplifiers barely supplied a few hundred milliwatts, but power and audio fidelity gradually increased as better transistors became available and amplifier architecture evolved.
Transistors are commonly used in modern musical instrument amplifiers, in which circuits up to a few hundred watts are common and relatively cheap. Transistors have largely replaced valves (electron tubes) in instrument amplifiers. Some musical instrument amplifier manufacturers mix transistors and vacuum tubes in the same circuit, to utilize the inherent benefits of both devices.

Computers

The "first generation" of electronic computers used vacuum tubes, which generated large amounts of heat, were bulky, and were unreliable. The development of the transistor was key to computer miniaturization and reliability. The "second generation" of computers, through the late 1950s and 1960s featured boards filled with individual transistors and magnetic memory cores. Subsequently, transistors, other components, and their necessary wiring were integrated into a single, mass-manufactured component: the integrated circuit.

References

Further reading

  • The invention of the transistor & the birth of the information age

External links

Datasheets

A wide range of transistors has been available since the 1960s and manufacturers continually introduce improved types. A few examples from the main families are noted below. Unless otherwise stated, all types are made from silicon semiconductor. Complementary pairs are shown as NPN/PNP or N/P channel. Links go to manufacturer datasheets, which are in PDF format. (On some datasheets the accuracy of the stated transistor category is a matter of debate.)
  • 2N3904/2N3906, BC182/BC212 and BC546/BC556: Ubiquitous, BJT, general-purpose, low-power, complementary pairs. They have plastic cases and cost roughly ten cents U.S. in small quantities, making them popular with hobbyists.
  • AF107: Germanium, 0.5 watt, 250 MHz PNP BJT.
  • BFP183: Low power, 8 GHz microwave NPN BJT.
  • LM394: "supermatch pair", with two NPN BJTs on a single substrate.
  • 2N2219A/2N2905A: BJT, general purpose, medium power, complementary pair. With metal cases they are rated at about one watt.
  • 2N3055/MJ2955: For years, the venerable NPN 2N3055 has been the "standard" power transistor. Its complement, the PNP MJ2955 arrived later. These 1 MHz, 15 A, 60 V, 115 W BJTs are used in audio power amplifiers, power supplies, and control.
  • BU508: NPN, 1500 V power BJT. Designed for television horizontal deflection, its high voltage capability also makes it suitable for use in ignition systems.
  • MJ11012/MJ11015: 30 A, 120 V, 200 W, high power Darlington complementary pair BJTs. Used in audio amplifiers, control, and power switching.
  • 2N5457/2N5460: JFET (depletion mode), general purpose, low power, complementary pair.
  • BSP296/BSP171: IGFET (enhancement mode), medium power, near complementary pair. Used for logic level conversion and driving power transistors in amplifiers.
  • IRF3710/IRF5210: IGFET (enhancement mode), 40 A, 100 V, 200 W, near complementary pair. For high-power amplifiers and power switches, especially in automobiles.
Part numbers starting with "2S" are from Japan. Transistors with part numbers beginning with 2SA or 2SB are PNP BJTs. Transistors with part numbers beginning with 2SC or 2SD are NPN BJTs. Transistors with part numbers beginning with 2SJ are P-channel FETs (both JFETs and MOSFETs). Transistors with part numbers beginning with 2SK are N-channel FETs (both JFETs and MOSFETs).

Patents

transistor in Afrikaans: Transistor
transistor in Arabic: ترانزستور
transistor in Bengali: ট্রানজিস্টর
transistor in Belarusian: Транзістар
transistor in Belarusian (Tarashkevitsa): Транзыстар
transistor in Bosnian: Tranzistor
transistor in Bulgarian: Транзистор
transistor in Catalan: Transistor
transistor in Czech: Tranzistor
transistor in Danish: Transistor
transistor in German: Transistor
transistor in Estonian: Transistor
transistor in Modern Greek (1453-): Τρανζίστορ
transistor in Spanish: Transistor
transistor in Esperanto: Transistoro
transistor in Basque: Trantsistore
transistor in Persian: ترانزیستور
transistor in French: Transistor
transistor in Friulian: Transistôr
transistor in Galician: Transistor
transistor in Korean: 트랜지스터
transistor in Hindi: ट्रांज़िस्टर
transistor in Croatian: Tranzistor
transistor in Indonesian: Transistor
transistor in Interlingua (International Auxiliary Language Association): Transistor
transistor in Icelandic: Smári (rafeindafræði)
transistor in Italian: Transistor
transistor in Hebrew: טרנזיסטור
transistor in Georgian: ტრანზისტორი
transistor in Kazakh: Транзистор
transistor in Latin: Transistrum
transistor in Latvian: Tranzistors
transistor in Hungarian: Tranzisztor
transistor in Mongolian: Транзистор
transistor in Dutch: Transistor
transistor in Japanese: トランジスタ
transistor in Norwegian: Transistor
transistor in Norwegian Nynorsk: Transistor
transistor in Polish: Tranzystor
transistor in Portuguese: Transístor
transistor in Romanian: Tranzistor
transistor in Russian: Транзистор
transistor in Sicilian: Transìsturi
transistor in Sinhala: ට්‍රාන්සිස්ටරය
transistor in Simple English: Transistor
transistor in Slovak: Tranzistor
transistor in Slovenian: Tranzistor
transistor in Serbian: Транзистор
transistor in Serbo-Croatian: Tranzistor
transistor in Sundanese: Transistor
transistor in Finnish: Transistori
transistor in Swedish: Transistor
transistor in Tamil: திரிதடையம்
transistor in Tatar: Tranzistor
transistor in Thai: ทรานซิสเตอร์
transistor in Vietnamese: Tranzito
transistor in Turkish: Transistör
transistor in Ukrainian: Транзистор
transistor in Urdu: منتقزاحم
transistor in Yiddish: טראנזיסטאר
transistor in Chinese: 晶体管
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1